Neuroevolutionary reinforcement learning for generalized control of simulated helicopters
نویسندگان
چکیده
This article presents an extended case study in the application of neuroevolution to generalized simulated helicopter hovering, an important challenge problem for reinforcement learning. While neuroevolution is well suited to coping with the domain's complex transition dynamics and high-dimensional state and action spaces, the need to explore efficiently and learn on-line poses unusual challenges. We propose and evaluate several methods for three increasingly challenging variations of the task, including the method that won first place in the 2008 Reinforcement Learning Competition. The results demonstrate that (1) neuroevolution can be effective for complex on-line reinforcement learning tasks such as generalized helicopter hovering, (2) neuroevolution excels at finding effective helicopter hovering policies but not at learning helicopter models, (3) due to the difficulty of learning reliable models, model-based approaches to helicopter hovering are feasible only when domain expertise is available to aid the design of a suitable model representation and (4) recent advances in efficient resampling can enable neuroevolution to tackle more aggressively generalized reinforcement learning tasks.
منابع مشابه
Autonomous Inverted Helicopter Flight via Reinforcement Learning
Helicopters have highly stochastic, nonlinear, dynamics, and autonomous helicopter flight is widely regarded to be a challenging control problem. As helicopters are highly unstable at low speeds, it is particularly difficult to design controllers for low speed aerobatic maneuvers. In this paper, we describe a successful application of reinforcement learning to designing a controller for sustain...
متن کاملHybrid Cooperative Agents with Online Reinforcement Learning for Traffic Control
This paper presents the application of fuzzy-neuroevolutionary hybrid system with online reinforcement learning for intelligent road traffic management and control. Taking a step away from the conventional traffic control system, the hybrid system presents different methodologies in knowledge acquisition, decisionmaking, learning and goal formulation with the use of a three-layered hierarchical...
متن کاملUtilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملReinforcement Learning Based PID Control of Wind Energy Conversion Systems
In this paper an adaptive PID controller for Wind Energy Conversion Systems (WECS) has been developed. Theadaptation technique applied to this controller is based on Reinforcement Learning (RL) theory. Nonlinearcharacteristics of wind variations as plant input, wind turbine structure and generator operational behaviordemand for high quality adaptive controller to ensure both robust stability an...
متن کاملDual Control for Approximate Bayesian Reinforcement Learning
Control of non-episodic, finite-horizon dynamical systems with uncertain dynamics poses a tough and elementary case of the exploration-exploitation trade-off. Bayesian reinforcement learning, reasoning about the effect of actions and future observations, offers a principled solution, but is intractable. We review, then extend an old approximate approach from control theory—where the problem is ...
متن کامل